
This comprehensive course offers an in-depth exploration of both iOS and Android operating
systems, focusing on their internals and security features. The iOS segment of the course
dives into the architecture of iOS, memory management, application sandboxing, code
signing, and advanced mitigations like SPTM, TXM, PAC, PAN, and PPL. Students will also
receive a thorough introduction to the ARM64 architecture, including static and dynamic
analysis techniques, debugging tools, and disassembly tools. Moving into iOS application
security, students will explore topics such as code signing, encryption, secure
communication, and the use of Frida for dynamic instrumentation. Advanced topics like
hooking, memory manipulation, and instrumenting network communication will also be
covered. The course also covers iOS malware analysis, including static, dynamic, and
behavioral analysis, along with mitigation and prevention strategies.

On the Android side, participants will gain a broad understanding of Android system
architecture, including drivers, modules, the Linux kernel, and the Android Binder. Hands-on
experience in reverse engineering, exploit development for ARM platforms, memory
management, and vulnerabilities will be provided. The course also covers Android's boot,
recovery, rooting processes, and permissions, along with security features like DAC, CAP,
SECCOMP, and SELinux.

COURSE OVERVIEW

OFFENSIVE MOBILE
REVERSING AND
EXPLOITATION
Expert-Led Cybersecurity Training · Beginner to Advanced

https://8ksec.io/
https://8ksec.io/offensive-mobile-reversing-and-exploitation/
https://8ksec.io/offensive-mobile-reversing-and-exploitation/
https://8ksec.io/offensive-mobile-reversing-and-exploitation/

KEY LEARNING OBJECTIVES

Get an understanding of the latest ARM64 instruction set
Learn the internals of Mobile Kernels along with several Kernel security mitigations
Learn Device Fingerprinting and Anti-Fraud techniques
Advanced Dynamic Instrumentation using Frida
Understand some of the latest bugs and mitigations (PAC, CoreTrust, PPL, etc)
Get an intro to common bug categories like UaF, Heap overflow and more
Understanding how Rooting and Jailbreaks work
Reverse engineer iOS and Android binaries (Apps and system binaries)
Learn how to audit iOS and Android apps for security vulnerabilities
Understand and bypass anti-debugging and obfuscation techniques
Get a quick walkthrough on using Ghidra, radare2, Hopper, Frida and other tools
Learn how accessibility malwares work, and how to reverse engineer well-known crypto
wallet stealers
Learn how to symbolicate the iOS and Android kernel
Learn how to extract and decrypt boot images for Android devices
Perform patch diffing on iOS updates to spot security-relevant code changes
Extract and prepare binaries, then use key tools for analysis
Reverse engineer and trace Android JNI bindings, including RegisterNatives
Use tools like JNINinja, Frida, and Medusa to hook and monitor JNI methods at runtime
Build a functional JVM environment and AFL++ Frida-mode to fuzz JNI bindings and
validate crashes
Become an Offensive Mobile Security Expert (OMSE)

For a practical learning experience, the course covers how to extract and decrypt boot
images for Android devices. The course covers handson exercises for symbolicating the
Android kernel and porting exploits to other Android devices. Advanced Frida techniques
such as custom tracing, profiling, and memory inspection are explored with real-world
applications. Case studies on prominent malware and custom malware samples designed
for the course shed light on reverse engineering and advanced forensics techniques.
Application Security related vulnerabilities occurring due to Android components are also
covered as a part of the course.

Throughout the course, participants will engage in practical labs to gain hands-on
experience with iOS and Android internals, application security, reverse engineering, and
vulnerability analysis. By the end of the course, students will have the skills needed to reverse
engineer, design, develop, and secure iOS and Android applications effectively, as well as
have a good understanding of all the security measures implemented in Android/iOS
Userland and Kernel.

This course prepares you for the Offensive Mobile Security Expert (OMSE) certification
exam, a hands-on assessment specifically designed to test your grasp of advanced mobile
security domains including userland and kernel components.

https://8ksec.io/

This course is for penetration testers,
mobile developers or anyone keen to
learn mobile application security and
wants to get started in OS exploitation.

WHO SHOULD ATTEND?

Working knowledge of cybersecurity
and pentesting fundamentals
Basic working knowledge of iOS and
Android platforms
Basic Linux skills and command-line
proficiency
Understanding of fundamental
programming concepts and looping
structures in at least one higher-level
language (Java, Kotlin, Objective-C,
Swift, C, C++, or similar)
Basic ARM/AARCH64 binary assembly
and exploitation knowledge is
recommended, but not required

PREREQUISITE KNOWLEDGE

An attempt to Offensive Mobile
Security Expert (OMSE) certification
exam
Certificate of completion for the
Training program
Source code for vulnerable binaries
used during the class
Source code for Exploit PoCs' that
can be used for Bug Bounties
All Python Scripts used during the
course
Students will be provided with access
to Corellium for the duration of the
course
Students will be provided access to
cloud instances for the duration of
the course
Slack access for the class and after
for regular mobile security
discussions

WHAT WILL THE STUDENTS GET

Laptop with: 8+ GB RAM and 40 GB
hard disk space
Students will be provided with access
to Linux cloud instances
Students will be provided with access
to Corellium for iOS and Android
hands-on and as such do not need
to carry physical devices
Administrative access on the system

Detailed Course Setup instructions and
Slack access will be sent a few weeks
prior to the class

HARDWARE/SOFTWARE
REQUIREMENT

This is a completely hands-on course designed for beginners and intermediate students.
Instead of just slides, attendees will get a chance to exploit all of the vulnerabilities taught by
the instructors. For the On-site and Virtual sessions, the attendees will be provided with
Cloud-based Corellium labs for performing the hands-on iOS and Android exercises without
the need to carry physical phones. A Slack channel is created before the course for the
students so that they can be adequately prepared in terms of hardware and software
before the class.

WHY SHOULD YOU TAKE THIS COURSE?

https://8ksec.io/

What’s in a Code Signature?
Entitlements explained
How Sandboxing works on iOS
Setting up lldb for Debugging
lldb basic and advanced usage
Setting up the testing environment
Jailbreaking your device
What’s in a Rootless Jailbreak?
Jailbreak Bootstraps
Sideloading apps
Binary protection measures
Decrypting IPA files
Self-signing iOS binaries
Analyzing Proprietary security
Mitigations
Overview of Past Vulnerabilities
Intro to dyld_shared_cache

Module 1: Introduction to Reverse
Engineering in iOS and Android

Key Concepts and Terminologies
Introduction to Hopper/Ghidra
Introduction to the ARM 64 instruction
set
ARM64 security mitigations
ARM64 calling convention
Introduction to Objective-C and Swift
Reversing Objective-C and Swift
Binaries
Introduction to Java and Kotlin
Disassembling methods
Modifying assembly instructions
Deciphering Mangled Swift Symbols
Identifying Native Code
Understanding the Program flow
Identifying Cross-Platform mobile
frameworks
Reversing ARM binaries
Exploiting a simple Heap Overflow
Building a simple ROP chain
Breaking ASLR with Info leaks/Brute
force
Exploit mitigations (ASLR, Heap
Poisoning, PAN, etc)

iOS security model
App Signing, Sandboxing, and
Provisioning
iOS App Groups
Primer to iOS 17-18 security
Xcode Primer
Address Sanitizer
Exploring the iOS filesystem

Module 2: Getting Started with iOS
Security

Module 3: iOS Kernel internals

Intro to XNU kernel
The Mach and BSD Layer
Overview of IOKit
Extracting the Kernelcache and Kexts
Analyzing specific kexts AMFI,
CoreTrust, Sandbox
Sandbox Profiles
Symbolicating iOS Kernelcache
Overview of mach_msg2,
SAD_FENG_SHUI, PGX
Entitlement validation in the Kernel
Analyzing Kernel Panic files
Walkthrough of PAC, SPTM, PAN, GXL,
PPL etc
Patching Diffing XNU kernel

COURSE SYLLABUS

(Continued on the next page)

https://8ksec.io/

Case Study of Sandbox Escapes
Incorrect validation of Entitlements
XPC Related vulnerabilities
Case Study of a Kernel Vulnerability
Case Study of a PAC Bypass

Module 6: iOS vulnerabilities

Tracing Crypto operations
Side channel data leakage
Sensitive information disclosure
Bypassing Jailbreak Detection
Bypassing SSL Pinning
Bypassing Certificate transparency
checks
Exploiting iOS WebViews
Exploiting URL schemes and Universal
LInks
Client-side injection
Bypassing jailbreak, piracy checks
Inspecting Network traffic
Traffic interception over HTTP, HTTPs
Manipulating network traffic
Identifying iOS malware

Module 5: iOS application
vulnerabilities

Understanding different stages of a
Malware
Device Acquisition techniques
Using Custom IOCs
Case Study of some Public Malware

Module 7: iOS Malware Reversing

Module 8: Securing iOS Ecosystem

AppAttest and Device Check
frameworks
Device Fingerprinting
Detecting GPS Spoofing
Implementing Secure Webviews
Code Obfuscation techniques
Protecting the Transport Layer
Detecting Malicious Libraries
Implementing Anti-Debug Checks
Detecting Suspicious Device Reset
Detecting Patched Applications
Detecting Proxied Applications
Jailbreak Detection Techniques
Pasteboard Security Measures
Understanding the Lockdown Mode
Understanding Code Signature
Checks

Module 9: Intro to Android Security

Android Security Architecture
Extracting APK files from Google Play
Understanding Android application
structure
Signing Android applications
Understanding Android ADB
Understanding the Android file
system
Permission Model Flaws
Attack Surfaces for Android
applications

Module 4: Frida in-depth

Overview of Frida and its capabilities
Setting up the Frida environment
Frida usage and commands
Frida-trace and handlers
Frida hooking techniques
Frida on Swift applications
Frida on native code
Frida memory manipulation
techniques
Analyzing messaging apps using
Frida
Invoking custom functions with Frida

(Continued on the next page)

https://8ksec.io/

Exploiting Crypto using Frida
Basic App Exploitation techniques
using Frida
Dumping Class Information using
Frida
Dumping Method Information using
Frida
Viewing and Changing Information
using Frida
Calling Arbitrary functions using Frida
Tracing using Frida
Advanced App Exploitation
techniques using Frida
Frida on non-rooted Android

Module 13: Frida and Automated
Exploitation

Module 10: Android Components

Understanding Android Components
Introducing Android Emulator
Introducing Android AVD
Setting up Android Pentest
Environment

Process of Android Apps Engineering
Reverse Engineering for Android Apps
Smali Learning Labs
Examining Smali files
Dex Analysis and Obfuscation
Reversing Obfuscated Android
Applications
Exploiting Android Accessibility
Permissions
Reverse Engineering known complex
Malwares in the Wild
Patching Android Applications
Android App Hooking

Module 11: Reversing Android apps

Proxying Android Traffic
Exploiting Local Storage
Exploiting Weak Cryptography
Exploiting Side Channel Data Leakage
Exploiting Content Provider Path
Traversal & Info Leakage
Multiple Manual and Automated Root
Detection and Bypass Techniques
Exploiting Weak Authorization
mechanism
Identifying and Exploiting Android
Components
Exploiting Android NDK
Android Game Hacking
Multiple Manual and Automated SSL
Pinning Bypass techniques

Module 12: Static and Dynamic
analysis

Firebase Exploitation
Exploiting Biometric Authentication
In-memory tampering
Exploiting Flutter Applications
Exploiting AWS Cognito
Misconfiguration
Exploiting Android Deep Links and
WebViews

Detecting Patched Android
Applications
App Integrity Protection
Detecting Malicious Libraries
Detecting Emulator/Rooted Devices
Secure Implementation of WebViews
Implementing Anti-Debug Checks
Detecting Suspicious Device Reset
Detecting Proxied Applications

Module 14: Securing Android Apps

(Continued on the next page)

https://8ksec.io/

8kSec.io
info@8ksec.io

About the company

8kSec is a foremost cyber security research company offering exceptional training and
consulting services to aid clients in enhancing their security stance. Our experts possess
extensive experience in delivering specialised cybersecurity training and consulting to
several commercial and defence organisations across the United States, Europe, and the
Middle East and North Africa region.

Get in touch

Android Boot process and Bootloader
interaction
Customizing and Building Android
Kernel for Vulnerability Research
Android Rooting Process
Debugging Android Kernel and
binaries
Extract Android kernel from Boot
image
Symbolicating the Android Kernel
Privilege Escalation on Android
SELinux explained
Overview of Kernel protections and
bypasses

Module 15: Android Kernel

The information in this document is subject to change without notice.

https://twitter.com/8ksec
https://www.linkedin.com/company/8ksec/
https://8ksec.io/
https://8ksec.io/

