OFFENSIVE MOBILE
REVERSING AND
EXPLOITATION

Expert-Led Cybersecurity Training - Beginner to Advanced

COURSE OVERVIEW

This comprehensive course offers an in-depth exploration of both iOS and Android operating
systems, focusing on their internals and security features. The iOS segment of the course
dives into the architecture of iOS, memory management, application sandboxing, code
signing, and advanced mitigations like SPTM, TXM, PAC, PAN, and PPL. Students will also
receive a thorough introduction to the ARM64 architecture, including static and dynamic
analysis techniques, debugging tools, and disassembly tools. Moving into iOS application
security, students will explore topics such as code signing, encryption, secure
communication, and the use of Frida for dynamic instrumentation. Advanced topics like
hooking, memory manipulation, and instrumenting network communication will also be
covered. The course also covers iOS malware analysis, including static, dynamic, and
behavioral analysis, along with mitigation and prevention strategies.

On the Android side, participants will gain a broad understanding of Android system
architecture, including drivers, modules, the Linux kernel, and the Android Binder. Hands-on
experience in reverse engineering, exploit development for ARM platforms, memory
management, and vulnerabilities will be provided. The course also covers Android's boot,
recovery, rooting processes, and permissions, along with security features like DAC, CAP,
SECCOMP, and SELinux.

8KSeC


https://8ksec.io/
https://8ksec.io/offensive-mobile-reversing-and-exploitation/
https://8ksec.io/offensive-mobile-reversing-and-exploitation/
https://8ksec.io/offensive-mobile-reversing-and-exploitation/

For a practical learning experience, the course covers how to extract and decrypt boot
images for Android devices. The course covers handson exercises for symbolicating the
Android kernel and porting exploits to other Android devices. Advanced Frida techniques
such as custom tracing, profiling, and memory inspection are explored with real-world
applications. Case studies on prominent malware and custom malware samples designed
for the course shed light on reverse engineering and advanced forensics techniques.
Application Security related vulnerabilities occurring due to Android components are also
covered as a part of the course.

Throughout the course, participants will engage in practical labs to gain hands-on
experience with iOS and Android internals, application security, reverse engineering, and
vulnerability analysis. By the end of the course, students will have the skills needed to reverse
engineer, design, develop, and secure iOS and Android applications effectively, as well as
have a good understanding of all the security measures implemented in Android/iOS
Userland and Kernel.

This course prepares you for the Offensive Mobile Security Expert (OMSE) certification
exam, a hands-on assessment specifically designed to test your grasp of advanced mobile
security domains including userland and kernel components.

KEY LEARNING OBJECTIVES

e Get an understanding of the latest ARM64 instruction set

e Learn the internals of Mobile Kernels along with several Kernel security mitigations

e Learn Device Fingerprinting and Anti-Fraud techniques

e Advanced Dynamic Instrumentation using Frida

 Understand some of the latest bugs and mitigations (PAC, CoreTrust, PPL, etc)

e Get an intro to common bug categories like UaF, Heap overflow and more

¢ Understanding how Rooting and Jailbreaks work

 Reverse engineer iOS and Android binaries (Apps and system binaries)

¢ Learn how to audit iOS and Android apps for security vulnerabilities

e Understand and bypass anti-debugging and obfuscation techniques

e Get a quick walkthrough on using Ghidra, radare2, Hopper, Frida and other tools

e Learn how accessibility malwares work, and how to reverse engineer well-known crypto
wallet stealers

¢ Learn how to symbolicate the iOS and Android kernel

e Learn how to extract and decrypt boot images for Android devices

e Perform patch diffing on iOS updates to spot security-relevant code changes

e Extract and prepare binaries, then use key tools for analysis

e Reverse engineer and trace Android JNI bindings, including RegisterNatives

e Use tools like JNINinja, Frida, and Medusa to hook and monitor JNI methods at runtime

¢ Build a functional JVM environment and AFL++ Frida-mode to fuzz JNI bindings and
validate crashes

» Become an Offensive Mobile Security Expert (OMSE)

8KSeC


https://8ksec.io/

WHY SHOULD YOU TAKE THIS COURSE?

This is a completely hands-on course designed for beginners and intermediate students.

Instead of just slides, attendees will get a chance to exploit all of the vulnerabilities taught by

the instructors. For the On-site and Virtual sessions, the attendees will be provided with

Cloud-based Corellium labs for performing the hands-on iOS and Android exercises without

the need to carry physical phones. A Slack channel is created before the course for the

students so that they can be adequately prepared in terms of hardware and software

before the class.

HARDWARE/SOFTWARE
REQUIREMENT

e Laptop with: 8+ GB RAM and 40 GB
hard disk space

e Students will be provided with access
to Linux cloud instances

e Students will be provided with access
to Corellium for iOS and Android
hands-on and as such do not need
to carry physical devices

e Administrative access on the system

Detailed Course Setup instructions and
Slack access will be sent a few weeks
prior to the class

PREREQUISITE KNOWLEDGE

» Working knowledge of cybersecurity
and pentesting fundamentals

e Basic working knowledge of iOS and
Android platforms

e Basic Linux skills and command-line
proficiency

e Understanding of fundamental
programming concepts and looping
structures in at least one higher-level
language (Java, Kotlin, Objective-C,
Swift, C, C++, or similar)

 Basic ARM/AARCHG64 binary assembly
and exploitation knowledge is
recommended, but not required

WHO SHOULD ATTEND?

This course is for penetration testers,
mobile developers or anyone keen to
learn mobile application security and
wants to get started in OS exploitation.

WHAT WILL THE STUDENTS GET

e An attempt to Offensive Mobile
Security Expert (OMSE) certification
exam

e Certificate of completion for the
Training program

e Source code for vulnerable binaries
used during the class

¢ Source code for Exploit PoCs' that
can be used for Bug Bounties

e All Python Scripts used during the
course

e Students will be provided with access
to Corellium for the duration of the
course

e Students will be provided access to
cloud instances for the duration of
the course

¢ Slack access for the class and after
for regular mobile security
discussions

8KSeC


https://8ksec.io/

COURSE SYLLABUS

Module 1: Introduction to Reverse
Engineering in iOS and Android

» Key Concepts and Terminologies

e Introduction to Hopper/Ghidra

 Introduction to the ARM 64 instruction
set

e ARMG4 security mitigations

e ARMG64 calling convention

e Introduction to Objective-C and Swift

e Reversing Objective-C and Swift
Binaries

 Introduction to Java and Kotlin

e Disassembling methods

e Modifying assembly instructions

e Deciphering Mangled Swift Symbols

* |dentifying Native Code

e Understanding the Program flow

e Identifying Cross-Platform mobile
frameworks

* Reversing ARM binaries

» Exploiting a simple Heap Overflow

e Building a simple ROP chain

e Breaking ASLR with Info leaks/Brute
force

« Exploit mitigations (ASLR, Heap
Poisoning, PAN, etc)

Module 2: Getting Started with iOS
Security

e iOS security model

e App Signing, Sandboxing, and
Provisioning

e {OS App Groups

e Primer to iOS 17-18 security

e Xcode Primer

e Address Sanitizer

e Exploring the iOS filesystem

¢ What's in a Code Signature?

¢ Entitlements explained

e How Sandboxing works on iOS

e Setting up lldb for Debugging

¢ |lldb basic and advanced usage

e Setting up the testing environment

¢ Jailbreaking your device

e What's in a Rootless Jailbreak?

e Jailbreak Bootstraps

e Sideloading apps

e Binary protection measures

e Decrypting IPA files

¢ Self-signing iOS binaries

e Analyzing Proprietary security
Mitigations

e Overview of Past Vulnerabilities

e Intro to dyld_shared_cache

Module 3:i0S Kernel internals

e Intro to XNU kernel

e The Mach and BSD Layer

e Overview of IOKit

e Extracting the Kernelcache and Kexts

¢ Analyzing specific kexts AMFI,
CoreTrust, Sandbox

e Sandbox Profiles

e Symbolicating iOS Kernelcache

e Overview of mach_msg2,
SAD_FENG_SHUI, PGX

e Entitlement validation in the Kernel

e Analyzing Kernel Panic files

e Walkthrough of PAC, SPTM, PAN, GXL,
PPL etc

e Patching Diffing XNU kernel

(Continued on the next page)

8KSeC


https://8ksec.io/

Module 4: Frida in-depth

e Overview of Frida and its capabilities

e Setting up the Frida environment

e Frida usage and commands

e Frida-trace and handlers

e Frida hooking techniques

e Frida on Swift applications

» Frida on native code

e Frida memory manipulation
techniques

e Analyzing messaging apps using
Frida

 Invoking custom functions with Frida

Module 5:iOS application
vulnerabilities

e Tracing Crypto operations

e Side channel data leakage

» Sensitive information disclosure

e Bypassing Jailbreak Detection

e Bypassing SSL Pinning

» Bypassing Certificate transparency
checks

e Exploiting iOS WebViews

e Exploiting URL schemes and Universal
Links

e Client-side injection

e Bypassing jailbreak, piracy checks

* Inspecting Network traffic

 Traffic interception over HTTP, HTTPs

e Manipulating network traffic

e Identifying iOS malware

Module 6: iOS vulnerabilities

e Case Study of Sandbox Escapes

¢ Incorrect validation of Entitlements
e XPC Related vulnerabilities

e Case Study of a Kernel Vulnerability
e Case Study of a PAC Bypass

Module 7:i0OS Malware Reversing

e Understanding different stages of a
Malware

e Device Acquisition techniques

e Using Custom IOCs

e Case Study of some Public Malware

Module 8: Securing iOS Ecosystem

» AppAttest and Device Check
frameworks

e Device Fingerprinting

e Detecting GPS Spoofing

e Implementing Secure Webviews

e Code Obfuscation techniques

e Protecting the Transport Layer

e Detecting Malicious Libraries

e Implementing Anti-Debug Checks

» Detecting Suspicious Device Reset

e Detecting Patched Applications

e Detecting Proxied Applications

e Jailbreak Detection Techniques

e Pasteboard Security Measures

e Understanding the Lockdown Mode

e Understanding Code Signature
Checks

Module 9: Intro to Android Security

e Android Security Architecture

e Extracting APK files from Google Play

e Understanding Android application
structure

e Signing Android applications

e Understanding Android ADB

e Understanding the Android file
system

e Permission Model Flaws

e Attack Surfaces for Android
applications

(Continued on the next page)

8KSeC


https://8ksec.io/

Module 10: Android Components

e Understanding Android Components

e Introducing Android Emulator

e Introducing Android AVD

e Setting up Android Pentest
Environment

Module 11: Reversing Android apps

e Process of Android Apps Engineering

e Reverse Engineering for Android Apps

e Smali Learning Labs

e Examining Smali files

e Dex Analysis and Obfuscation

e Reversing Obfuscated Android
Applications

» Exploiting Android Accessibility
Permissions

e Reverse Engineering known complex
Malwares in the Wild

e Patching Android Applications

e Android App Hooking

Module 12: Static and Dynamic
analysis

e Proxying Android Traffic

e Exploiting Local Storage

» Exploiting Weak Cryptography

» Exploiting Side Channel Data Leakage

e Exploiting Content Provider Path
Traversal & Info Leakage

e Multiple Manual and Automated Root
Detection and Bypass Techniques

e Exploiting Weak Authorization
mechanism

 Identifying and Exploiting Android
Components

 Exploiting Android NDK

e Android Game Hacking

e Multiple Manual and Automated SSL
Pinning Bypass techniques

e Firebase Exploitation

e Exploiting Biometric Authentication

¢ In-memory tampering

e Exploiting Flutter Applications

e Exploiting AWS Cognito
Misconfiguration

e Exploiting Android Deep Links and
WebViews

Module 13: Frida and Automated
Exploitation

¢ Exploiting Crypto using Frida

e Basic App Exploitation techniques
using Frida

e Dumping Class Information using
Frida

e Dumping Method Information using
Frida

¢ Viewing and Changing Information
using Frida

e Calling Arbitrary functions using Frida

e Tracing using Frida

e Advanced App Exploitation
techniques using Frida

e Frida on non-rooted Android

Module 14: Securing Android Apps

e Detecting Patched Android
Applications

e App Integrity Protection

e Detecting Malicious Libraries

« Detecting Emulator/Rooted Devices

e Secure Implementation of WebViews

¢ Implementing Anti-Debug Checks

e Detecting Suspicious Device Reset

e Detecting Proxied Applications

(Continued on the next page)

8KSeC


https://8ksec.io/

Module 15: Android Kernel

e Android Boot process and Bootloader
interaction

e Customizing and Building Android
Kernel for Vulnerability Research

¢ Android Rooting Process

e Debugging Android Kernel and
binaries

e Extract Android kernel from Boot
image

e Symbolicating the Android Kernel

¢ Privilege Escalation on Android

¢ SELinux explained

e Overview of Kernel protections and
bypasses

About the company

8kSec is a foremost cyber security research company offering exceptional training and
consulting services to aid clients in enhancing their security stance. Our experts possess
extensive experience in delivering specialised cybersecurity training and consulting to
several commercial and defence organisations across the United States, Europe, and the
Middle East and North Africa region.

Get in touch

8kSec.io
info@8ksec.io

on

The information in this document is subject to change without notice.


https://twitter.com/8ksec
https://www.linkedin.com/company/8ksec/
https://8ksec.io/
https://8ksec.io/

